
The Evolution of Microsoft’s
Exploit Mitigations

Past, Present, and Future

Tim Burrell
tim.burrell@microsoft.com

Microsoft Security Engineering Center (MSEC)
 Security Science

Credits

• Peter Beck, Matt Miller (MSEC)

• Louis Lafreniere (Compiler team)

• Many others in these teams who helped along
the way

Agenda

• Defining the purpose of exploit mitigations

• Microsoft’s exploit mitigation evolution

– The past

– The present/future

• Windows7

• Visual Studio 2010

The purpose of exploit mitigations

• Goal: decrease the probability of successful exploitation
– Prevent the use of specific exploitation techniques
– Reduce the reliability of exploitation techniques

• Generic protection for known & unknown vulnerabilities in all
products, not just Microsoft products!

Effectiveness

Ineffective Effective

Probability of
successful

exploitation
(exploitability)

1

0

Exploitation
technique

Mitigation
technique

THE PAST
ACT I

Pre-XP SP2:
The era of uninhibited worms

• Reliable exploitation techniques already existed
– And they affected Windows, too!

• Exploits were developed, worms raged

– Jul, 2000: IIS Code Red (MS01-033)
– Jan, 2003: SQL Slammer (MS02-039)
– Aug, 2003: Blaster (MS03-026)
– May, 2004: Sasser (MS04-011)

• No platform exploit mitigations existed
– Attack surface was very big
– Exploitation techniques were uninhibited

Exploitation

Fake chunk

• Stack: return address overwrite[Aleph96]

• Heap: free chunk unlink[Solar00,Maxx01,Anon01]

Heap chunk Heap chunk Heap chunk Heap chunk

Heap
Layout

Padding
Free chunk

header
Shellcode

Exploit
Buffer

Where
address

What
address

Buffer overrun

Local variables
Saved
EBP

Return
address

Parameters
Stack
Layout

Padding Shellcode
Exploit
Buffer

Address of
jmp esp

Buffer overrun

Same techniques, different OS Exploitation

Visual Studio 2002

• GS v1 released

• Behavior
– Compiler heuristics identify at-risk functions

– Prologue inserts cookie into stack frame

– Epilogue checks cookie & terminates on mismatch

Mitigation

Local variables
Saved
EBP

Return
address

Parameters
GS

Cookie

Higher addresses Lower addresses

Buffer overrun

• Adjacent local/parameter overwrite[Ren02]

• SEH overwrite bypass[Litchfield03]

GS v1 weaknesses Exploitation

void vulnerable(char *in) {

 int unsafe = 0; char buf[256];

 strcpy(buf, in); overflow!

 if (unsafe != 0) DoSomethingUnsafe(); unsafe is corrupt

 return; GS cookie checked

}

N H

N H

app!_except_handler4

k32!_except_handler4

0xffffffff

Normal SEH Chain

N H 0x7c1408ac

0x414106eb

[jmp +6]

Corrupt SEH Chain

pop eax

pop eax

ret

• GS v1.1 released with VS2003

• SafeSEH added, reliant on XP+ & recompile
Safe SEH Handler Invalid SEH Handler

app!_except_handler4 app!eh1

app!eh2

app!_except_handler4

…
Valid

app!_main+0x1c

Not found in table

?

SafeSEH Table

Visual Studio 2003 Mitigation

Buffer local
variables

Saved
EBP

Return
address

Parameters
GS

Cookie

Higher addresses Lower addresses

Buffer overrun

Other local
variables

• Limitations of SafeSEH

– Handler can be in an executable non-image region

– Handler can be inside a binary lacking SafeSEH

N H

Process heap

kernel32.dll

ntdll.dll

…

random.dll

user32.dll

Compiled with

/SAFESEH

Not compiled

With /SAFESEH

SafeSEH evasions Exploitation

• System binaries built with GS v1.1 & SafeSEH

• Data Execution Prevention (DEP)

– Hardware-enforced non-executable pages

– Software-enforced SEH handler validation

Windows XP SP2 arrives Mitigation

Local variables
Saved
EBP

Return
address

Parameters
Stack
Layout

Padding Shellcode
Exploit
Buffer

Address of
jmp esp

Buffer overrun

Stack, heap,
and other
regions are now
non-executable

• First round of heap mitigations

– Safe unlinking (E->B->F == E->F->B == E)

– Heap header cookie validation

• Limited randomization of PEB/TEB

– Reduces the reliability of certain techniques

• Pointer encoding

– Protect UEF, VEH, and others via EncodeSystemPointer

Windows XP SP2 arrives Mitigation

• Return to libc[Solar97,Nergal01]

• Many variations
– Return into VirtualProtect/VirtualAlloc
– Disable DEP via ProcessExecuteFlags[Skape05]
– Create executable heap & migrate to it
– Return-oriented programming[Shacham08]

Same NX bypass, new OS Exploitation

Local
Variables

Saved
EBP

Return
address

Arguments
Stack
Layout

Padding
Address

of
system

Fake

Return
Address

Exploit
Buffer

Address

of
“cmd”

Buffer overrun

• Unsafe lookaside list allocations[Anisimov04,Conover04-2]
– Overwrite free chunk on lookaside list & then cause allocation

• Unsafe unlinking of free chunks[Conover04-2]
– Overwrite free chunk with specific Flink and Blink values

• Unsafe unlink via RtlDeleteCriticalSection[Falliere05]

– Overwrite critical section structure on heap & delete it

• Exploiting FreeList[0][Moore05]

– Overwrite free chunk stored at FreeList[0] with specific data

New heap techniques, less universal Exploitation

• GS v2 released with VS2005

– Shadow copy of parameters is made

– Strict GS pragma

• C++ operator::new integer overflow detection[Howard07]

Visual Studio 2005 Mitigation

Buffer local
variables

Saved
EBP

Return
address

Parameters
(Not used if unsafe)

GS
Cookie

Higher addresses Lower addresses

Buffer overrun
Other local
variables

&
Shadowed
parameters

• Address Space Layout Randomization (ASLR)[PaX02]
– Make the address space unpredictable

Windows Vista arrives Mitigation

app.exe

user32.dll

kernel32.dll

ntdll.dll

app.exe

user32.dll

kernel32.dll

ntdll.dll

app.exe

user32.dll

kernel32.dll

ntdll.dll

Boot 1 Boot 2 Boot 3

process

address

space

Region Entropy

Image 8 bits

Heap 5 bits

Stack 14 bits

• Second round of heap mitigations[Marinescu06]
– Removal of lookaside lists and array lists

– Block metadata encryption

– Header cookie scope extended, validated in more places

– Dynamic change of heap allocation algorithms (LFH)

– Terminate on heap corruption (default for system apps)

– RtlDeleteCriticalSection technique mitigated by
RtlSafeRemoveEntryList

– FreeList[0] technique mitigated by
RtlpFastRemoveFreeBlock

Windows Vista arrives Mitigation

• Partial address overwrite[Durden02]

• Address information disclosure[Soeder06]

• Reduced entropy on some platforms[Whitehouse07]

• Brute forcing[Nergal01,Durden02,Shacham04]

• Non-relocateable/predictable addresses[Sotirov08]

Same ASLR evasions, new OS Exploitation

Local
Variables

Saved
EBP

Return
address

 Buffer overrun

memcpy(

 dest, Stack buf

 src, Controlled

 length); Controlled

• HEAP structure overwrite[Hawkes08]

– Overwrite pointer in alloc’d chunk with heap base

– Cause pointer to be freed & then re-allocated

– Overwrite with specially crafted HEAP structure

• LFH bucket/header overflow[Hawkes08]

• Still need to evade DEP and ASLR if enabled

Newer heap techniques,
partial & still less universal

Exploitation

• SEH Overwrite Protection (SEHOP)
– Dynamic SEH chain validation
– GS+SEHOP = robust mitigation for most stack buffer overruns!

• Kernel mode ASLR
– NT/HAL (5 bits of entropy)
– Drivers (4 bits of entropy)

Windows Vista SP1 and
Windows Server 2008 RTM

Mitigation

N H

N H

app!_except_handler4

k32!_except_handler4

N H ntdll!FinalExceptionHandler

N H app!_main+0x1c

0x41414141

Can’t reach validation frame!

Valid SEH Chain Invalid SEH Chain

?

Exploit Mitigations Timeline

Stack

Heap

Code
Execution

/GS 1.0 /GS 1.1

Heap 1.0

DEP ASLR

2007 2006 2005 2004 2003

/GS 2.0

2008

/NXCOMPAT

Heap 2.0 HeapTerm

EH4 SEHOP

DEP + ATL

THE PRESENT
ACT II

Evolution of OS mitigations

• XPSP2

– GS applies to both kernel and user mode

– Heap mitigations are user mode only

• Vista: DEP + ASLR

– Significantly increase difficulty of user mode
exploitation

• Windows 7

– Further improve kernel mode mitigations

Mitigation

Pool Overruns

• Very similar to Heap Overruns

• Allow arbitrary write what/where via unlink

• Occurs when

– Merging adjacent free chunks

– Removing chunk from ListHead

Pool
Layout

Exploit
Buffer

Fake chunk

Pool chunk Pool chunk Pool chunk Pool chunk

Padding
Free chunk

header
Shellcode

Where
address

What
address

Exploitation

Safe unlinking

• Checks integrity of LIST_ENTRY structure

 (E->B->F == E->F->B == E)

• XPSP2 added this check in Heap

• Windows 7 RC has check in Kernel Pool

– Free as well as Checked builds

Mitigation

Safe Unlinking - benefits

• Security

– Mitigates arbitrary writes via unlink

– Other exploit vectors far less generic

• Reliability

– Detects corruption as early as possible

– Bugchecks with unique code (0x19, 3, ...)

Mitigation

Safe Unlinking - costs

• Performance

– Doesn’t hit performance measurably

– A few extra instructions

– No additional paging

• Compatibility

– Pool corruption always bad, no exceptions

Mitigation

MS08-001 IGMP Pool Overrun

• Pool overrun in tcpip.sys [Kortchinsky08]

• Root cause is arithmetic overflow in buffer size
calculation

– One loop counts entries using a 16-bit counter

– Counter wraps around past 65535

– Memory is allocated based on counter

– A different loop copies entries into buffer

Exploitation

MS08-001 IGMP Pool Overrun

UINT16 SourceCount = 0;

for (...)

{

 if (...) SourceCount++;

}

RecordEntry = ExAllocatePoolWithTag(

 NonPagedPool,

 HeaderSize + (AddressBytes * SourceCount),

 IpGenericPoolTag);

Exploitation

MS08-001 IGMP Pool Overrun

SourceList = RecordEntry + HeaderSize;

for (...)

{

 if (...) {

 RtlCopyMemory(

 SourceList,

 ...,

 AddressBytes);

 SourceList += AddressBytes;

 }

}

Exploitation

Pool Mitigations

• Safe unlinking prevents all current variants of
documented pool overrun exploits

• “Makes it immeasurably harder to exploit”

– We’re not saying impossible

– Also mitigates MS07-017, MS08-001, MS08-007

• Only safe unlinking right now

– No pointer encoding, cookies etc

– No protection of LookAside lists

Mitigation

• Increased entropy for kernel mode ASLR

– Drivers: 6 bits on x86, 8 bits on x64

Other enhancements Mitigation

THE FUTURE
ACT III

GS – effective or not?

• Vista

– GS fundamentally the same

– Many bypasses closed off via OS improvements

• EH abuse

• NX/DEP

• ASLR

• Vista released worldwide 30th January 2007

• MS07-017 security bulletin 10th April 2007

– Trivially exploitable stack overflow in ANI file parsing

Mitigation

The GS heuristic

• Not all functions GS-protected
– Obvious and less obvious performance cost

• Insert cookie for
– arrays of size>4 with element size <= 2 (char/wchar)

– Structures containing arrays with element size <=2

• Originally designed to mitigate overflows arising
from untrusted string data

Mitigation

MS07-017 – ANI stack overflow

• The target of the overflow was a ANIHEADER structure
on the stack:

typedef struct _ANIHEADER {

 DWORD cbSizeof;

 DWORD cFrames;

 DWORD cSteps;

 DWORD cx, cy;

 DWORD cBitCount, cPlanes;

 DWORD jifRate;

 DWORD fl; } ANIHEADER, *PANIHEADER;

Mitigation

MS07-017 – ANI stack overflow

• The ANIHEADER overflow equivalent to:
 ANIHEADER myANIheader;

 memcpy(&myANIheader,

 untrustedFileData->headerdata,

 untrustedFileData->headerlength);

• No character buffers on the stack
No GS protection

myANIheader is being treated like a character buffer

Mitigation

Target buffer mitigated by GS?

Security bulletin GS?

MS03-026 (Blaster) Yes

MS06-040 Yes

MS07-029 Yes

MS04-035 (Exchange) No DWORD array

MS06-054 (.PUB) No structure populated from file

MS07-017 (.ANI) No structure populated from file

Mitigation

Vista SP1

• In development at time of ANI vulnerability

• #pragma strict_gs_check?

• More aggressive GS heuristic

• Much more aggressive GS heuristic

• Any address-taken local variable is considered
a potential target!

Mitigation

strict GS Mitigation

Security bulletin Legacy GS Strict GS

MS03-026 (Blaster) Yes Yes

MS06-040 Yes Yes

MS07-029 Yes Yes

MS04-035 (Exchange) No DWORD array Yes

MS06-054 (.PUB) No Data structure Yes

MS07-017 (.ANI) No Data structure Yes

Security bulletin Legacy GS

MS03-026 (Blaster) Yes

MS06-040 Yes

MS07-029 Yes

MS04-035 (Exchange) No DWORD array

MS06-054 (.PUB) No Data structure

MS07-017 (.ANI) No Data structure

Target buffer mitigated by GS?

strict GS

#pragma strict_gs_check(on)

void main()

{

 int i;

 printf(“%d”, (int) &i); // address-taken

}

Mitigation

strict GS

• Applied in a very targeted way for Vista SP1

• But not suitable for system-wide deployment
GS++

Binary Functions in

DLL

OS Number of

cookies

% protected

functions

Factor

increase

qasf.dll 1526
Vista RTM (GS) 58 3.80%

3.5
Vista SP1 (strict GS) 202 13%

avifil32.dll 494
Vista RTM (GS) 40 8.10%

3.4
Vista SP1 (strict GS) 134 27%

WMASF.dll 1484
Vista RTM (GS) 40 2.70%

13.1
Vista SP1 (strict GS) 524 35%

Mitigation

Issues of scale

Vista SP1 approach was targeted

Can we make the

default /GS
better?

Enhancing GS

• Increased coverage

– Protect more stuff

• Smarter coverage

– Don’t protect where it’s unnecessary

• Different models for how this might
work

GS++ heuristic ?

What subset is most likely to contain
untrusted data?

Performance concerns! • All arrays?

• All structures?

Mitigation

Arrays where element type not of pointer type:

 char myBuf[]

 DWORD myBuf[]

 HANDLE myBuf[]

and size of array is >2 elements

GS++ heuristic Mitigation

GS++ heuristic

• Structures:

– Containing an array where element type is not of
pointer type.

– Made up of pure data:

• No members of pointer type

• >8 bytes in size

• Default constructor/destructor

Mitigation

 struct _ANIHEADER{

 DWORD cbSizeof;

 DWORD cFrames;

 DWORD cSteps;

 DWORD cx, cy;

 DWORD cBitCount

 DWORD cPlanes;

 DWORD jifRate;

 DWORD fl; };

Impact on cookie count

Original GS VS2010 GS

User/client 9608 12846

Kernel 2361 4686

User/client
(% total fns)

6.0% 8.0%

Kernel mode
(% total fns)

5.2% 10.4%

Cookie increase between 2% and 5%

GS-protected functions in sample code

Mitigation

GS optimization

• No GS cookies when usage is provably safe

STDAPI ConsumeData(BYTE *pbData)
{
 BYTE Temp[MAX];

 if (pbData)
 {
 ...
 memcpy (Temp, pbData, ARRAYSIZE(Temp));
 ...
 }

Mitigation

GS optimization

• No GS cookies when usage is provably safe
STDAPI FillBuffer(wchar_t *pBuf, int count)
{
 ...
 memcpy (pBuf, GetData(), count*sizeof(wchar_t));
 ...
}
STDAPI ParseData()
{
 wchar_t buffer[BUF_SIZE];
 FillBuffer(buffer, _countof(buffer));
 ...
}

Mitigation

GS enhancements [VS2010]

Function foo

String buffer

 data structure

 data structure

 Integer array

Integer

• GS heuristic
– Identify more

potential hazards

• GS optimization
– Some potential hazards

turn out to be safe

GS-protected

GS-protected

Increased scope of heuristic:

MS07-017 LoadAniIcon function

 ANI data
structure

GS-protected

GS-protected

Mitigation

Impact on cookie count

Original GS VS2010 GS
VS2010 GS

[with GS opt]

User/client 9608 12846 11654

Kernel 2361 4686 3909

User/client
(% total fns)

6.0% 8.0% 7.3%

Kernel mode
(% total fns)

5.2% 10.4% 8.7%

Impact on stack overflow
security bulletins

Security bulletin Original GS VS2010 GS Strict GS

MS03-026 (Blaster) Yes Yes Yes

MS06-040 Yes Yes Yes

MS07-029 Yes Yes Yes

MS04-035 (Exchange) No Yes Yes

MS06-054 (.PUB) No Yes Yes

MS07-017 (.ANI) No Yes Yes

Mitigation

... but GS not a panacea

Security bulletin Original GS VS2010 GS Strict GS

MS03-026 (Blaster) Yes Yes Yes

MS06-040 Yes Yes Yes

MS07-029 Yes Yes Yes

MS04-035 (Exchange) No Yes Yes

MS06-054 (.PUB) No Yes Yes

MS07-017 (.ANI) No Yes Yes

MS08-072 N/A N/A N/A

MS08-067 N/A N/A N/A

Mitigation

Still need to write secure code!

• Even the new heuristic will not cover all cases

• GS does not apply to some types of stack-
based attacks (for example underflow).

Mitigation

Local
Variables

Saved
EBP

Return
address

Args

CALLEE

Local
Variables

Saved
EBP

Return
address

Args

GS
Cookie

CALLER

Stack grows toward lower addresses

Enhanced GS

• In Visual Studio 2010

– Same /GS switch

– Enhanced GS++ heuristic

– GS optimization

Mitigation

Conclusion

• Modern exploitation is difficult & not universal
– Techniques are tied to specific vulnerability scenarios

• Gaps do exist that can make exploitation easier
– But these are the exception, not the rule

• We are committed to protecting our customers
– Continued improvement of our mitigation technology

– Providing actionable exploitability data with bulletins

Questions?

Thank you!

• Security Science at Microsoft
– http://www.microsoft.com/security/msec/default.aspx

• Security Research & Defense blog
– http://blogs.technet.com/swi/default.aspx

http://www.microsoft.com/security/msec/default.aspx
http://blogs.technet.com/swi/default.aspx

References

[Aelph96] Aleph1. Smashing the stack for fun and profit. Phrack 49. Nov, 1996.

[Solar97] Solar Designer. Getting around non-executable stack (and fix). Bugtraq. Aug, 1997.

[Solar00] Solar Designer. JPEG COM Marker Processing Vulnerability in Netscape Browsers. Bugtraq. Jul, 2000.

[Maxx01] MaXX. Vudo malloc tricks. Phrack 57. Aug, 2001.

[Anon01] Anonymous. Once upon a free(). Phrack 57. Aug, 2001.

[Nergal01] Nergal. Advanced return-into-libc exploits (PaX case study). Phrack 58. Dec, 2001.

[Ren02] Chris Ren, Michael Weber, and Gary McGraw. Microsoft Compiler Flaw Technical Note. Feb, 2002.

[Durden02] Tyler Durden. Bypassing PaX ASLR Protection. Phrack 59. Jul, 2002.

[PaX02] PaX Team. Address space layout randomization. 2002.

[Litchfield03] David Litchfield. Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server. Sep, 2003.

[Anisimov04] Alexander Anisimov. Defeating Microsoft Windows XP SP2 Heap protection. 2004.

[Conover04] Matt Conover, Oded Horovitz. Reliable Windows Heap Exploits. CanSecWest. 2004.

[Conover04-2] Matt Conover. Windows Heap Exploitation (Win2KSP0 through WinXPSP2). SyScan. 2004.

[Litchfield04] David Litchfield. Windows Heap Overflows. Black Hat USA. 2004.

[Falliere05] Nicolas Falliere. A new way to bypass Windows heap protections. Sep, 2005.

[Skape05] Skape, Skywing. Bypassing Windows Hardware-enforced DEP. Uninformed. Sep, 2005.

[Nagy05] Ben Nagy. Beyond NX: an attacker’s guide to Windows anti-exploitation technology. PakCon. Oct, 2005.

[Moore05] Brett Moore. Exploiting FreeList[0] on Windows XP Service Pack 2. Dec, 2005.

[Marinescu06] Adrian Marinescu. Windows Vista Heap Management Enhancements. Black Hat USA. Aug, 2006.

References

[Skape06] Skape. Preventing the Exploitation of SEH Overwrites. Uninformed. Sep, 2006.

[Soeder06] Derek Soeder. Memory Retrieval Vulnerabilities. Oct, 2006.

[Howard07] Michael Howard. Why Windows Vista is unaffected by the VML Bug. Jan, 2007.

[Sotirov07] Alexander Sotirov. Windows ANI header buffer overflow. Mar, 2007.

[Waisman07] Nicolas Waisman. Understanding and Bypassing Windows Heap Protection. Jul, 2007.

[Whitehouse07] Ollie Whitehouse. GS and ASLR in Windows Vista. Black Hat USA. Aug, 2007.

[Dowd08] Mark Dowd. Application-specific attacks: Leveraging the ActionScript Virtual Machine. Apr, 2008.

[Lawrence08] Eric Lawrence. IE8 Security Part I: DEP/NX Memory Protection. Apr, 2008.

[Sotirov08] Alexander Sotirov and Mark Dowd. Bypassing Browser Memory Protections. Black Hat USA. Aug, 2008.

[Hawkes08] Ben Hawkes. Attacking the Vista Heap. Black Hat USA. Aug, 2008.

[Shacham08] Hovav Shacham. Return-Oriented Programming. Exploits Without Code Injection. Black Hat USA. Aug, 2008.

[Alberts09] Bas Alberts. A bounds check on the exploitability index. Feb, 2009.

[Korthcinsky08] Kostya Kortchinsky. Real World Kernel Pool Exploitation, SyScan 08 Hong Kong

