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The purpose of exploit mitigations 

 
 

 
 
 
 
 
 
 

• Goal: decrease the probability of successful exploitation 
– Prevent the use of specific exploitation techniques 
– Reduce the reliability of exploitation techniques 

• Generic protection for known & unknown vulnerabilities in all 
products, not just Microsoft products! 
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THE PAST 
ACT I 



Pre-XP SP2:  
The era of uninhibited worms 

• Reliable exploitation techniques already existed 
– And they affected Windows, too! 

 
• Exploits were developed, worms raged  

– Jul, 2000: IIS Code Red (MS01-033) 
– Jan, 2003: SQL Slammer (MS02-039) 
– Aug, 2003: Blaster (MS03-026) 
– May, 2004: Sasser (MS04-011) 

 

• No platform exploit mitigations existed 
– Attack surface was very big 
– Exploitation techniques were uninhibited 

Exploitation 



Fake chunk 

• Stack: return address overwrite[Aleph96] 

 

 

 

• Heap: free chunk unlink[Solar00,Maxx01,Anon01] 
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Visual Studio 2002 

• GS v1 released 
 

 

 

 

• Behavior 
– Compiler heuristics identify at-risk functions 

– Prologue inserts cookie into stack frame 

– Epilogue checks cookie & terminates on mismatch 

Mitigation 

Local variables 
Saved  
EBP 

Return 
address 

Parameters 
GS 

Cookie 

Higher addresses Lower addresses 

Buffer overrun 



• Adjacent local/parameter overwrite[Ren02] 

 

 

 

• SEH overwrite bypass[Litchfield03] 

 

 

GS v1 weaknesses Exploitation 

void vulnerable(char *in) { 

   int unsafe = 0; char buf[256]; 

   strcpy(buf, in);                        overflow! 

   if (unsafe != 0) DoSomethingUnsafe();   unsafe is corrupt 

   return;                                 GS cookie checked 

} 

N H 
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app!_except_handler4 

k32!_except_handler4 

0xffffffff 
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N H 0x7c1408ac 

0x414106eb 

[jmp +6] 
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pop eax 

pop eax 

ret 



• GS v1.1 released with VS2003 

 

 

 

• SafeSEH added, reliant on XP+ & recompile 
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Visual Studio 2003 Mitigation 
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• Limitations of SafeSEH 

– Handler can be in an executable non-image region 

– Handler can be inside a binary lacking SafeSEH 

 

N H 

Process heap 

kernel32.dll 

ntdll.dll 

… 

random.dll 

user32.dll 

Compiled with 

/SAFESEH 

Not compiled  

With /SAFESEH 

SafeSEH evasions Exploitation 



• System binaries built with GS v1.1 & SafeSEH 

 

• Data Execution Prevention (DEP) 

– Hardware-enforced non-executable pages 

– Software-enforced SEH handler validation 

 

Windows XP SP2 arrives Mitigation 
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• First round of heap mitigations 

– Safe unlinking (E->B->F == E->F->B == E) 

– Heap header cookie validation 

 

• Limited randomization of PEB/TEB 

– Reduces the reliability of certain techniques 

 

• Pointer encoding 

– Protect UEF, VEH, and others via EncodeSystemPointer 

 

Windows XP SP2 arrives Mitigation 



• Return to libc[Solar97,Nergal01] 
 
 
 
 

• Many variations 
– Return into VirtualProtect/VirtualAlloc 
– Disable DEP via ProcessExecuteFlags[Skape05] 
– Create executable heap & migrate to it 
– Return-oriented programming[Shacham08] 

 

Same NX bypass, new OS Exploitation 
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• Unsafe lookaside list allocations[Anisimov04,Conover04-2] 
– Overwrite free chunk on lookaside list & then cause allocation 

 

• Unsafe unlinking of free chunks[Conover04-2] 
– Overwrite free chunk with specific Flink and Blink values 
 

• Unsafe unlink via RtlDeleteCriticalSection[Falliere05] 

– Overwrite critical section structure on heap & delete it 

 
• Exploiting FreeList[0][Moore05] 

– Overwrite free chunk stored at FreeList[0] with specific data 

New heap techniques, less universal Exploitation 



• GS v2 released with VS2005 

– Shadow copy of parameters is made 

– Strict GS pragma 

 

 

 

 

• C++ operator::new integer overflow detection[Howard07] 

 

 

 

 

Visual Studio 2005 Mitigation 
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• Address Space Layout Randomization (ASLR)[PaX02] 
– Make the address space unpredictable 

 

 

 

 

 

Windows Vista arrives Mitigation 
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• Second round of heap mitigations[Marinescu06] 
– Removal of lookaside lists and array lists 

– Block metadata encryption 

– Header cookie scope extended, validated in more places 

– Dynamic change of heap allocation algorithms (LFH) 

– Terminate on heap corruption (default for system apps) 

– RtlDeleteCriticalSection technique mitigated by 
RtlSafeRemoveEntryList 

– FreeList[0] technique mitigated by 
RtlpFastRemoveFreeBlock 

Windows Vista arrives Mitigation 



• Partial address overwrite[Durden02] 

 

 

 

• Address information disclosure[Soeder06] 

• Reduced entropy on some platforms[Whitehouse07] 

• Brute forcing[Nergal01,Durden02,Shacham04] 

• Non-relocateable/predictable addresses[Sotirov08] 

 

Same ASLR evasions, new OS Exploitation 

Local 
Variables 

Saved 
EBP 

Return 
address 

 Buffer overrun 

memcpy( 

  dest,     Stack buf 

  src,      Controlled 

  length);  Controlled 



• HEAP structure overwrite[Hawkes08] 

– Overwrite pointer in alloc’d chunk with heap base 

– Cause pointer to be freed & then re-allocated 

– Overwrite with specially crafted HEAP structure 

 

• LFH bucket/header overflow[Hawkes08] 

 

• Still need to evade DEP and ASLR if enabled 

 

Newer heap techniques, 
partial & still less universal 

Exploitation 



• SEH Overwrite Protection (SEHOP) 
– Dynamic SEH chain validation 
– GS+SEHOP = robust mitigation for most stack buffer overruns! 

 
 
 
 
 
 

• Kernel mode ASLR 
– NT/HAL (5 bits of entropy) 
– Drivers (4 bits of entropy) 

Windows Vista SP1 and 
Windows Server 2008 RTM 

Mitigation 
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Exploit Mitigations Timeline 
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THE PRESENT 
ACT II 



Evolution of OS mitigations  

• XPSP2 

– GS applies to both kernel and user mode 

– Heap mitigations are user mode only 

• Vista: DEP + ASLR 

– Significantly increase difficulty of user mode 
exploitation 

• Windows 7 

– Further improve kernel mode mitigations 

 

Mitigation 



Pool Overruns 

• Very similar to Heap Overruns 

• Allow arbitrary write what/where via unlink 

• Occurs when 

– Merging adjacent free chunks 

– Removing chunk from ListHead 
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Exploitation 



Safe unlinking 

• Checks integrity of LIST_ENTRY structure 

 (E->B->F == E->F->B == E) 

 

• XPSP2 added this check in Heap 

 

• Windows 7 RC has check in Kernel Pool 

– Free as well as Checked builds 

Mitigation 



Safe Unlinking - benefits 

• Security 

– Mitigates arbitrary writes via unlink 

– Other exploit vectors far less generic 

• Reliability 

– Detects corruption as early as possible 

– Bugchecks with unique code (0x19, 3, ...) 

 

 

 

Mitigation 



Safe Unlinking - costs 

• Performance 

– Doesn’t hit performance measurably 

– A few extra instructions 

– No additional paging 

• Compatibility 

– Pool corruption always bad, no exceptions 

 

Mitigation 



MS08-001 IGMP Pool Overrun 

• Pool overrun in tcpip.sys [Kortchinsky08] 

• Root cause is arithmetic overflow in buffer size 
calculation 

– One loop counts entries using a 16-bit counter 

– Counter wraps around past 65535 

– Memory is allocated based on counter 

– A different loop copies entries into buffer 

 

 

 

Exploitation 



MS08-001 IGMP Pool Overrun 

UINT16 SourceCount = 0; 

for (...) 

{ 

  if (...) SourceCount++;  

} 

 

RecordEntry = ExAllocatePoolWithTag( 

 NonPagedPool, 

 HeaderSize + (AddressBytes * SourceCount), 

 IpGenericPoolTag); 

 

 

 

Exploitation 



MS08-001 IGMP Pool Overrun 

SourceList = RecordEntry + HeaderSize; 

for (...) 

{ 

 if (...) { 

  RtlCopyMemory( 

   SourceList,  

   ...,  

   AddressBytes); 

  SourceList += AddressBytes; 

 } 

} 

 

 

 

Exploitation 



Pool Mitigations 

• Safe unlinking prevents all current variants of 
documented pool overrun exploits 

• “Makes it immeasurably harder to exploit” 

– We’re not saying impossible 

– Also mitigates MS07-017, MS08-001, MS08-007 

• Only safe unlinking right now 

– No pointer encoding, cookies etc 

– No protection of LookAside lists 

 

 

 

 

Mitigation 



• Increased entropy for kernel mode ASLR 

– Drivers: 6 bits on x86, 8 bits on x64 

 

 

Other enhancements  Mitigation 



THE FUTURE 
ACT III 



GS – effective or not?  

• Vista 

– GS fundamentally the same 

– Many bypasses closed off via OS improvements 

• EH abuse 

• NX/DEP 

• ASLR 

• Vista released worldwide 30th January 2007 

• MS07-017 security bulletin 10th April 2007 

– Trivially exploitable stack overflow in ANI file parsing 

 

 

Mitigation 



The GS heuristic 

• Not all functions GS-protected 
– Obvious and less obvious performance cost 

 

• Insert cookie for 
– arrays of size>4 with element size <= 2 (char/wchar) 

– Structures containing arrays with element size <=2 

 

• Originally designed to mitigate overflows arising 
from untrusted string data 

Mitigation 



MS07-017 – ANI stack overflow 

• The target of the overflow was a ANIHEADER structure 
on the stack: 

typedef struct _ANIHEADER { 

  DWORD cbSizeof; 

  DWORD cFrames; 

  DWORD cSteps; 

  DWORD cx, cy; 

  DWORD cBitCount, cPlanes; 

  DWORD jifRate; 

  DWORD fl; } ANIHEADER, *PANIHEADER; 

  
 

Mitigation 



MS07-017 – ANI stack overflow 

• The ANIHEADER overflow equivalent to: 
 ANIHEADER myANIheader; 

 memcpy(&myANIheader,  

  untrustedFileData->headerdata, 

  untrustedFileData->headerlength); 

 

• No character buffers on the stack 
No GS protection 

myANIheader is being treated like a character buffer 

 

Mitigation 



Target buffer mitigated by GS? 

Security bulletin GS? 

MS03-026 (Blaster) Yes 

MS06-040 Yes 

MS07-029 Yes 

MS04-035 (Exchange) No DWORD array 

MS06-054 (.PUB) No structure populated from file 

MS07-017 (.ANI) No structure populated from file 

Mitigation 



Vista SP1 

• In development at time of ANI vulnerability 

• #pragma strict_gs_check? 

• More aggressive GS heuristic 

• Much more aggressive GS heuristic 

• Any address-taken local variable is considered 
a potential target! 

Mitigation 



strict GS Mitigation 

Security bulletin Legacy GS Strict GS 

MS03-026 (Blaster) Yes Yes 

MS06-040 Yes Yes 

MS07-029 Yes Yes 

MS04-035 (Exchange) No DWORD array Yes 

MS06-054 (.PUB) No Data structure Yes 

MS07-017 (.ANI) No Data structure Yes 

Security bulletin Legacy GS 

MS03-026 (Blaster) Yes 

MS06-040 Yes 

MS07-029 Yes 

MS04-035 (Exchange) No DWORD array 

MS06-054 (.PUB) No Data structure 

MS07-017 (.ANI) No Data structure 

Target buffer mitigated by GS? 



strict GS 

#pragma strict_gs_check(on)  

void main() 

{ 

 int i; 

 

 printf(“%d”, (int) &i); // address-taken 

} 

 

Mitigation 



strict GS 

• Applied in a very targeted way for Vista SP1 
 
 
 
 
 
 
 

• But not suitable for system-wide deployment 
GS++ 

 

Binary Functions in 

DLL 

OS Number of 

cookies 

% protected 

functions  

Factor 

increase 

qasf.dll 1526 
Vista RTM (GS) 58 3.80% 

3.5 
Vista SP1 (strict GS) 202 13% 

avifil32.dll 494 
Vista RTM (GS) 40 8.10% 

3.4 
Vista SP1 (strict GS) 134 27% 

WMASF.dll 1484 
Vista RTM (GS) 40 2.70% 

13.1 
Vista SP1 (strict GS) 524 35% 

Mitigation 



Issues of scale 

 

Vista SP1 approach was targeted 

 

 
Can we make the 

default /GS 
better? 

 



Enhancing GS 

• Increased coverage 

– Protect more stuff 

 

• Smarter coverage 

– Don’t protect where it’s unnecessary 

 

• Different models for how this might 
work 



GS++ heuristic ?  

What subset is most likely to contain 
untrusted data? 

 

Performance concerns! • All arrays?   

 

• All structures? 

 

 

 

Mitigation 



Arrays where element type not of pointer type: 

  char myBuf[] 

  DWORD myBuf[] 

  HANDLE myBuf[] 

 

and size of array is >2 elements 

 

 

 

GS++ heuristic  Mitigation 

 

 

   

 



GS++ heuristic  

• Structures: 

– Containing an array where element type is not of 
pointer type. 

 

– Made up of pure data: 

• No members of pointer type 

• >8 bytes in size 

• Default constructor/destructor 

 

 

 

 

 

 

Mitigation 

 

 

  struct _ANIHEADER{ 

  DWORD cbSizeof; 

  DWORD cFrames; 

  DWORD cSteps; 

  DWORD cx, cy; 

  DWORD cBitCount 

  DWORD cPlanes; 

  DWORD jifRate; 

  DWORD fl; }; 

 



Impact on cookie count 

Original GS VS2010 GS  

User/client 9608 12846 

Kernel 2361 4686 

User/client 
(% total fns) 

6.0% 8.0% 

Kernel mode 
(% total fns) 

5.2% 10.4% 
 

Cookie increase between 2% and 5% 
 

 

 
 

GS-protected functions in sample code 

 

 

Mitigation 



GS optimization 

• No GS cookies when usage is provably safe 
 
STDAPI ConsumeData(BYTE *pbData) 
{ 
    BYTE Temp[MAX]; 
      
    if (pbData) 
    { 
 ... 
            memcpy (Temp,  pbData,  ARRAYSIZE(Temp)); 
 ... 
    } 

 

Mitigation 

 



GS optimization 

• No GS cookies when usage is provably safe 
STDAPI FillBuffer(wchar_t *pBuf, int count)  
{ 
 ... 
     memcpy (pBuf, GetData(), count*sizeof(wchar_t)); 
 ... 
} 
STDAPI ParseData()  
{ 
    wchar_t buffer[BUF_SIZE]; 
    FillBuffer(buffer, _countof(buffer)); 
    ... 
} 

Mitigation 

 



GS enhancements [VS2010] 

Function foo 

String buffer 

     data structure 

     data structure 

   Integer array 

Integer 

 

 

 

• GS heuristic 
– Identify more 

potential hazards 

• GS optimization 
– Some potential hazards 

turn out to be safe 

 

 

GS-protected 

GS-protected 

Increased scope of heuristic: 

MS07-017 LoadAniIcon function 

      ANI data 
structure 

GS-protected 

GS-protected 

 

Mitigation 



Impact on cookie count 

Original GS VS2010 GS  
VS2010 GS 

[with GS opt] 

User/client 9608 12846 11654 

Kernel 2361 4686 3909 

User/client  
(% total fns) 

6.0% 8.0% 7.3% 

Kernel mode 
(% total fns) 

5.2% 10.4% 8.7% 



Impact on stack overflow 
security bulletins 

Security bulletin Original GS VS2010 GS Strict GS 

MS03-026 (Blaster) Yes Yes Yes 

MS06-040 Yes Yes Yes 

MS07-029 Yes Yes Yes 

MS04-035 (Exchange) No Yes Yes 

MS06-054 (.PUB) No Yes Yes 

MS07-017 (.ANI) No Yes Yes 

Mitigation 



... but GS not a panacea 

Security bulletin Original GS VS2010 GS Strict GS 

MS03-026 (Blaster) Yes Yes Yes 

MS06-040 Yes Yes Yes 

MS07-029 Yes Yes Yes 

MS04-035 (Exchange) No Yes Yes 

MS06-054 (.PUB) No Yes Yes 

MS07-017 (.ANI) No Yes Yes 

MS08-072 N/A N/A N/A 

MS08-067 N/A N/A N/A 

Mitigation 



Still need to write secure code! 

• Even the new heuristic will not cover all cases 

• GS does not apply to some types of stack-
based attacks (for example underflow). 

 

Mitigation 
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Enhanced GS  

• In Visual Studio 2010 

– Same /GS switch 

– Enhanced GS++ heuristic 

– GS optimization 

Mitigation 



Conclusion 

• Modern exploitation is difficult & not universal 
– Techniques are tied to specific vulnerability scenarios 

 

• Gaps do exist that can make exploitation easier 
– But these are the exception, not the rule 

 

• We are committed to protecting our customers 
– Continued improvement of our mitigation technology 

– Providing actionable exploitability data with bulletins  

 

 

 
 



Questions? 

 

 

Thank you! 

 

 

• Security Science at Microsoft 
– http://www.microsoft.com/security/msec/default.aspx 

• Security Research & Defense blog 
– http://blogs.technet.com/swi/default.aspx 

 

 

http://www.microsoft.com/security/msec/default.aspx
http://blogs.technet.com/swi/default.aspx
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